

SWiFt Developer’s Guide
for SWiFt version 1.0

Prepared by: Jerod Wilkerson

Table of Contents

Table of Contents __ i
SWiFt Overview __ 1

Design Patterns ___ 1
The Model-View-Controller Pattern_____________________________________ 2
The Single-Servlet Pattern __ 2
The Command Pattern ___ 2

Struts ___ 3
The Controller Layer___ 3

The ActionServlet Class __ 3
The ActionMapping Class __ 5
ActionForm Classes ___ 5
Action Classes__ 5
The ActionForward Class ___ 6

The View Layer __ 6
Java Server Pages ___ 6
Struts Custom Tags__ 6
Custom Tag Summary ___ 9

The Model Layer__ 9
Struts Setup and Configuration__ 10

Data Sources __ 10
Form Beans ___ 10
Global Forwards ___ 11
Action Mappings___ 11

Validation and Error Handling __ 13
Struts Internationalization Features ______________________________________ 14

Resource Bundles __ 14
Browser Specified Locales ___ 14
Internationalized Text ___ 15
Internationalized Error Messages ______________________________________ 15

Struts Summary__ 15
SWiFt Security Extension__ 16

Security Extension Overview ___ 16
Security API Classes__ 17

The Authorizer Interface___ 17
The AbstractAuthorizer Class___ 17
The SwiftActionServlet Class___ 17
The SwiftActionMapping Class _______________________________________ 18
The ServletSecurityException Class____________________________________ 18

Security Configuration __ 18
Doctype__ 18
The <security-config> Tag ___ 19
The <security-role> Tag ___ 19

The NDS Security Implementation_______________________________________ 20

 i

NDS Security Administration___ 21
The XML Security Implementation ______________________________________ 21
Accessing the Security API __ 22
Security Custom Tags___ 23

The UserHasRole Tag___ 23
The UserNotHasRole Tag__ 23
The UserAuthorized Tag___ 24
The UserNotAuthorized Tag__ 24

Logging__ 25
Log4J Overview ___ 25
Log4J Setup and Configuration ___ 25

Error Handling Override___ 27
Application Configuration and Deployment__________________________________ 28

Servlet Container Setup ___ 28
Using the Blank Project ___ 28

The ‘web.xml’ File ___ 31
The ‘swift-config.xml’ File___ 31
The ‘xml-authorizer.xml’ File __ 31
The ‘log4j.xml’ and ‘log4j.properties’ Files______________________________ 32
Adding Java Server Pages__ 32
Adding Classes __ 32

Application Deployment___ 32
Future Enhancements ___ 33
Appendix I – Using Struts on iPlanet Application Server _______________________ 34

The iPlanet 6.5 Struts Patch __ 34
The ‘ias-web.xml’ File __ 34
Error Handling __ 35

 ii

SWiFt Overview

SWiFt is a standard framework for developing web applications. The Enterprise
Development Group (eDG) in conjunction with the Web Application Development group
of the State of Utah Division of Information Technology Services (ITS) is developing
and maintaining SWiFt. Agencies planning to host web applications at ITS are strongly
encouraged to use SWiFt as a basis for development. SWiFt provides a common
architecture for web applications hosted at ITS and will maximize ITS’s ability to
provide production support. Agencies not planning to host their web applications at ITS
will still receive significant benefits by using SWiFt, and are encouraged to do so.

SWiFt is being developed in an iterative fashion. The first version is available now (in
beta), with additional functionality planned for later versions. The current version
consists of a Model-View-Controller architecture with support for declarative application
security (authorization)1, application logging, and internationalization. SWiFt supports
application security through either the state of Utah's Novell Directory Services (NDS)
directory or an XML configuration file. Extensions can also be created to support other
security models.

This document describes the SWiFt architecture, with information on how to use it as a
basis for web application development projects. It also describes some of the
enhancements that are planned for the future.

Design Patterns

SWiFt is based on the following three design patterns:

• Model-View-Controller
• Single-Servlet
• Command

The combination of these three patterns provides a solid foundation for the SWiFt
framework based on industry accepted standards and best practices. Each of these design
patterns is briefly described below to provide a basis for understanding the SWiFt
architecture.

1 SWiFt’s security features are built on an extensible API that can be customized to support any underlying
security model. The current version contains API extensions to support Novell Directory Services (NDS)
based security using the state’s User Master Directory, and simple XML based security using user and role
settings specified in an XML file. Additional security extensions can be created to support other security
models (such as NT security).

 1

The Model-View-Controller Pattern
SWiFt is based on the Model-View-Controller (MVC) design pattern. MVC separates
three distinct forms of functionality within an application. The Model represents the
structure of the data in the application, as well as application-specific operations on that
data. The View presents data in some form to a user and provides a way for users to
interact with the application. An application may contain multiple Views. The
Controller handles the interactions between the View(s) and the Model of an application.
The Controller eliminates dependencies between the View(s) and the Model.

The MVC design pattern provides several benefits. Separating the Model from the
View(s) makes it easy to add additional types of Views for the same data. This
separation also allows Model and View components to vary independently, making
systems more adaptable, maintainable, and extensible. Having a Controller between the
View(s) and the Model eliminates dependencies between the View(s) and the Model.
This allows the Model to be changed (for example, the database can be changed from
Access to Oracle, or from flat files to a relational database) without affecting the View(s).
It also allows the View(s) to be changed without affecting the Model. The Controller
permits run-time selection of appropriate Views based on workflow, user preferences, or
Model state, and allows application functionality to be reused by different types of
Views. The Controller also allows configurable mapping of user actions to application
functions. The benefits of the MVC design pattern are so well known and widely
accepted that it is the basis for most information systems being developed today.

The Single-Servlet Pattern
The Single-Servlet pattern (an implementation of the Front-Controller pattern) centralizes
View management, navigation, and security for a web application in a single object that
handles incoming client requests. This single object is a Servlet that acts as the
Controller in a Model-View-Controller based web application. The Servlet responds to
user requests by translating the requests into application commands and executing them
as described in the “The Command Pattern” section of this document.

The Single-Servlet pattern provides the following benefits: 1) facilitates straightforward
maintenance of application navigation, 2) facilitates consistent application of security
policies across all Views in the system, 3) allows Views to be changed and reused
independently of each other, 4) simplifies application deployment because there is only
one Servlet to deploy.

The Command Pattern
The command pattern consists of a set of Command objects representing individual units
of application functionality, and a Factory object used to determine which Command
object will be created and invoked to handle each request. This pattern is often used in
conjunction with the Single-Servlet pattern in web applications. The command pattern
provides a convenient separation of business logic from other logic. It also separates
individual units of business logic from each other. This separation simplifies initial
development and enhances adaptability and maintenance of the code.

 2

Struts

Struts is an open-source framework for building web applications that is based on the
three design patterns described previously (Model-View-Controller, Single-Servlet, and
Command). It is part of the Jakarta project of the Apache Software Foundation. Struts
contains much of the functionality required by any web application, so it is used as the
core of the SWiFt framework. This section describes Struts in the context of a Model-
View-Controller architecture. An understanding of Struts is a prerequisite for using
SWiFt. For additional information on Struts, refer to the Struts web site
(http://jakarta.apache.org/struts/index.html)2. You should also read Appendix I (“Using
Struts on iPlanet Application Server”) if you plan to deploy Struts or SWiFt applications
to iPlanet.

The information in this section is provided to give the necessary background information
for understanding SWiFt. Although this section contains information on configuring
Struts applications, we do not recommend that you develop your application as a Struts
application and then add the SWiFt features later. You will find it much easier to
develop your SWiFt applications as SWiFt applications from the start. Developers with
extensive Struts experience may want to skip ahead to the “SWiFt Security Extension”
section of this document.

The Controller Layer

Most of the functionality provided by Struts is found in the Controller layer. The
Controller consists of five main classes or groups of classes. Each of these classes is
described below.

The ActionServlet Class
The ActionServlet class is the heart of the Struts framework. It serves the dual purpose
of being the Servlet in the Single-Servlet pattern and the Factory in the command pattern
as implemented by Struts. The ActionServlet class receives HTML ‘get’ and ‘post’
requests and interprets them as requests for application functionality.

After some initial processing, the ActionServlet uses the request URI to determine which
application action is being requested. An ActionMapping object represents the requested
action. The Servlet then creates an instance of an ActionForm object to represent any
parameters received from an HTML form (if the ActionMapping object indicates that the
request was initiated by an HTML form). If an ActionForm object is created, it can be
validated by calling it’s validate(…) method. If the ActionForm is valid, the Servlet
determines from the ActionMapping whether the request will be included with or
forwarded to another URL. If so, the ‘include’ or ‘forward’ is performed and processing

2 The Struts User Guide (http://jakarta.apache.org/struts/userGuide/index.html) is a great source of
information. We recommend that you read the Struts User Guide in its entirety after reading this document.

 3

http://jakarta.apache.org/struts/index.html
http://jakarta.apache.org/struts/userGuide/index.html

is complete. Otherwise, the Action object indicated by the ActionMapping is created and
executed. The Action object returns an instance of the ActionForward class, which
specifies a URL to which the request will be forwarded or redirected to display the
results. After the request is forwarded or redirected, processing is complete. Figure 1
provides a graphical representation of this process.

Figure 1: Struts Overview

Additional information about the ActionMapping, ActionForm, Action, and
ActionForward classes is provided below.

 4

The ActionMapping Class
Instances of the ActionMapping class represent the configuration information (from the
‘struts-config.xml’ file) that associates a URI with an action to be performed. The
ActionServlet creates the ActionMapping object from the request and uses it to determine
how to handle the request. The ActionMapping may specify that a request will be
forwarded to or included with another URL. However, most ActionMappings specify an
Action that will be performed. If the request was received from an HTML form, the
ActionMapping also specifies the class that will be used to represent the data from the
form. For additional information on the ActionMapping class, refer to the “Struts Setup
and Configuration” section of this document.

ActionForm Classes
ActionForm objects (also known as ‘form beans’) are used as containers for the data
received from ‘get’ and ‘post’ requests received from HTML forms. The ActionMapping
object indicates which form bean will be instantiated to contain the data. After
instantiating the appropriate form bean for a request, the ActionServlet calls mutator
(setter) methods on the object to populate it with the request data. If the ActionMapping
indicates that the form bean will be validated, the validate(…) method is called. The
validate(…) method is inherited from the ActionForm class and by default simply returns
null, indicating that the data is valid. Subclasses can override the validate(…) method to
validate the data and return an ActionErrors object indicating any errors that were
discovered. If an ActionErrors object containing one or more errors is returned, the
request is forwarded back to the URL from which it was received, resulting in the HTML
form being redisplayed3. Struts custom tags in the HTML form provide a simple way to
repopulate the form’s fields with the data that was submitted and display the error
messages on the form. These tags are described in the “Struts Custom Tags” section of
this document.

Action Classes
Business logic is added to Struts applications by creating subclasses of the Action class.
In a simple application, these Action subclasses may contain the business logic.
However, it is generally recommended that Action objects be used to invoke business
logic contained in other classes. Action objects contain dependencies on the HTTP
protocol. These dependencies are undesirable in business logic because they
unnecessarily limit the clients that can access the business logic to web clients. Keeping
business logic out of Action objects provides a separation between the Controller and
Model layers of the application, and makes the business logic available to any type of
client.

The ActionServlet invokes an Action object by calling it’s perform(…) method. The
perform method of the Action class simply returns null. To add functionality to a Struts
application, create subclasses of the Action class that override the perform(…) method to
either contain or call the appropriate business logic that should be invoked as the result of

3 The request is actually forwarded to the URL specified by the ‘input’ attribute of the corresponding action
mapping. This URL should normally reference the form that will submit the request.

 5

an HTTP request. The Action object should create Java Beans to represent any data to be
displayed to the user and place them in either the request, the user’s session, or the
application context to make them available to the application’s View layer.

The ActionForward Class
The perform method of an Action object returns an instance of the ActionForward class
to specify how the result of a request will be displayed to the user. The ActionForward
object indicates a URL (usually to a Java Server Page) to which the request will be
forwarded or redirected for the purpose of displaying the result.

The View Layer

The View layer of a Struts application consists of Java Server Pages, Struts custom tags,
and optional user defined custom tags. It may also contain user defined Servlets
(although this is rare).

Java Server Pages
Java Server Pages (JSPs) are used to create dynamic web pages. They provide a
convenient way to combine server-side Java code with HTML. The first time a JSP is
invoked it is compiled into a Servlet that outputs the specified HTML. The Struts
framework does not actually contain any JSPs. It does, however, provide support for
invoking user defined JSPs in a variety of ways.

Most JSPs are invoked from the ActionServlet by either forwarding or redirecting
requests to a URL specified by the ActionForward object returned by an Action object.
However, they can also be invoked to redisplay an input form when a validation error
occurs. JSPs may be invoked from other JSPs by using the Struts ‘forward’ or ‘redirect’
custom tags or by using features of the JSP specification directly. Invoking JSPs from
other JSPs is discouraged, however, because it allows requests to bypass the Controller
layer of the application.

Struts Custom Tags
Struts contains an extensive library of custom tags to simplify the creation of JSPs and to
make the features of the Struts framework available to the View layer of Struts
applications. Several of the tags provide built-in support for Struts’ internationalization
features. For more information on Struts’ support for internationalization, refer to the
“Struts Internationalization Features” section of this document. Some of the more
important tags are described below. For additional information on all of the available
tags, refer to the Struts API documentation. An article entitled “Using Struts” by Larry
Maturo is another useful source of information on Struts custom tags4.

4 “Using Struts” by Larry Maturo can be found on the Internet at
http://stealthis.athensgroup.com/presentations/Model_Layer_Framework/Struts_Whitepaper.pdfl. It is also
available as a link from the resources page of the Struts web site
(http://jakarta.apache.org/struts/resources.html).

 6

http://stealthis.athensgroup.com/presentations/Model_Layer_Framework/Struts_Whitepaper.pdfl
http://jakarta.apache.org/struts/resources.html

The HTML Tag
The Struts HTML custom tag can be used in place of the standard <html> tag. It creates
a standard <html> tag—setting the ‘lang’ attribute of the tag to the preferred language
specified in the user’s browser—and places the locale representing the default language
in the user’s session. Although most of the other Struts custom tags will work without
the Struts HTML custom tag, it is a good practice to use the Struts HTML custom tag in
all JSPs that are part of a Struts application. The following example shows how the
Struts HTML custom tag is used:

<%@ page language="java"%>
<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html"%>

<html:html>
<head>
</head>
<body>
</body>
</html:html>

The Errors Tag
The Struts Errors custom tag provides a convenient way to display validation and other
kinds of errors on a JSP page. The tag searches the user’s session for an ActionErrors
object, and if found, it displays the error message(s) at the point in the page where the tag
is located. The Struts Errors custom tag uses the internationalization features of the
framework to display internationalized error messages. For more information on
internationalization, refer to the “Struts Internationalization Features” section of this
document. By default, all error messages are displayed on the same line. To display the
messages on separate lines, include the
 HTML tag at the end of each error message
to be displayed. The following example shows how the Struts Errors custom tag is used.

<%@ page language="java"%>
<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html"%>

<html:html>
<head>
</head>
<body>
 <html:errors/>
</body>

</html:html>

The Form Tag
The main purpose of the Struts Form custom tag is to make the appropriate form bean
available to any Struts Input custom tags (such as text fields, and selection lists)
contained within the Form tag. The input custom tags create input fields that are pre-
populated with values from the form bean. This is particularly useful for validation. If a
form is submitted with validation errors, the ActionServlet forwards the request back to
the form that submitted the request. If the Errors tag is used, a list of validation errors is
displayed on the page. If the Form tag and input tags are used, the values that were
submitted are repopulated in the fields, selection lists, etc. of the form so the user will see
the same page they just submitted with the data they submitted, and a list of errors

 7

displayed. The following example shows how the Form custom tag is used with a set of
text input tags to create a form. A complete example would also include a submit button.
A more complete example is shown after the “The Message Tag” section of this
document.

<%@ page language="java"%>
<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html"%>

<html:html>
<head>
</head>
<body>
 <html:errors/>
 <html:form action="/EnterAddress" focus="firstName">
 First Name: <html:text property="firstName" size="10"/>

 Middle Name: <html:text property="middleName" size="10"/>

 Last Name <html:text property="lastName" size="30"/>
 :
 Addres <html:text property="address" size="50"/>
 s:
 City: <html:text property="city" size="50"/>

 State: <html:text property="state" size="5"/>

 Zip Code: <html:text property="zipCode" size="12"/>
 </html:form>
</body>
</html:html>

All ActionMappings that forward to JSPs that contain the Form tag are required to
specify a form bean class.

The Input Tags
Struts has a custom tag for each of the input types that are part of the HTML
specification. The input tags generate standard HTML input controls that are pre-
populated with the values from the form bean in the user’s session. The tags populate the
controls by calling the accessor method in the form bean matching the property attribute
of the input tag. For example, the Text input tag with a property attribute of “firstName”
is populated by calling the form bean’s getFirstName() method. For this mechanism to
work, the methods of the form bean need to match the naming convention for accessor
and mutator (getter and setter) methods for Java Beans.

If the session does not contain a form bean, the input controls are still created, but they
are not pre-populated. If the form bean does not contain an appropriate accessor method
for an input tag, the input control is not pre-populated.

The Message Tag
The Struts Message custom tag provides support for retrieving internationalized text from
locale specific resource bundles and placing it in JSPs. The Message tag uses the
language specified in the user’s browser to find the appropriate resource bundle from
which to retrieve the text. It then uses the key value (from it’s key attribute) to retrieve
the appropriate internationalized text message from the resource bundle and insert it at
the point where the Message tag is specified in the JSP. The following example shows
how the Message tag is used:

 8

<%@ page language="java"%>
<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html"%>
<%@ taglib uri="/WEB-INF/struts-bean.tld" prefix="bean"%>

<html:html>
<head>
</head>
<body>
 <html:errors/>
 <html:form action="/EnterAddress" focus="firstName">
 <bean:message key="enter_address.field.first_name"/>
 <html:text property="firstName" size="10"/>

 <bean:message key="enter_address.field.middle_name"/>
 <html:text property="middleName" size="10"/>

 <bean:message key="enter_address.field.last_name"/>
 <html:text property="lastName" size="30"/>

 <bean:message key="enter_address.field.address"/>
 <html:text property="address" size="50"/> <br
 <bean:message key="enter_address.field.city"/>

>

 <html:text property="city" size="50"/>

 <bean:message key="enter_address.field.state"/>
 <html:text property="state" size="5"/>

 <bean:message key="enter_address.field.zip_code"/>
 <html:text property="zipCode" size="12"/>

 <html:submit>
 <bean:message key="button.submit"/>
 </html:submit>
 </html:form>
</body>
</html:html>

This example assumes that the application contains one or more properly formatted and
named resource bundles with values for each of the keys specified in the message tags.

Custom Tag Summary
This has been a very brief overview of some of the custom tags that are part of the Struts
framework. Struts contains several other custom tags that have not been described here.
Developers can also create their own custom tags for use with Struts applications.

The Model Layer

Struts does not provide direct support for the Model (business logic and data access) layer
of a web application. Developers are free to use Enterprise Java Beans (EJBs), Data
Access Objects (DAOs) or any other technology or design pattern for developing
business logic. In Struts applications, business logic is connected to the Struts framework
through the perform(…) method of the Action objects. In a simple application, the
Model can be combined with the Controller by placing the business logic in the
perform(…) methods of the Action objects. In most applications, the business logic
should be separated from Action objects by using either the Data Access Object design
pattern or the EJB component model. This provides the benefit of making the business
logic available to non-web applications as well. When business logic is separated from
Action objects, the Action objects serve the following purposes: 1) calling the appropriate
business logic, 2) receiving data to be displayed in the JSPs and placing it in either the

 9

request, the session, or the application context for use by the JSPs and custom tags, 3)
forwarding the request to the appropriate JSP after the business logic is executed.

Struts Setup and Configuration

To use Struts as the framework for a web application, you must include the ‘struts.jar’
file in your application’s ‘war’ file. You will also need to make the ‘struts.jar’ file
available on your CLASSPATH environment variable so you can compile your code.
Placing the file on your CLASSPATH does not eliminate the need to place it in the
application’s ‘war’ file. DO NOT make the ‘struts.jar’ file accessible from the
CLASSPATH of your Servlet container or application server5. The ‘struts.jar’ file can be
downloaded as part of the binary distribution from the Apache Software Foundation’s
web site (http://jakarta.apache.org/site/binindex.html)6. We recommend that you use the
latest release build instead of the milestone or nightly builds. The easiest way to get
started building a Struts application is to use the blank project included with the binary
distribution. To start, simply unzip the ‘struts-blank.war’ file from the ‘webapps’
directory, and build your application in the resulting directory structure. For additional
information on the directory structure and files required of a Struts application refer to the
“Application Configuration and Deployment” section of this document. Information is
also available in the Struts User Guide.

To configure a Struts application, edit the ‘struts-config.xml’ file located in the
application’s ‘WEB-INF’ directory. The following sections describe the various tags in
the ‘struts-config.xml’ file with examples of how to modify them. For additional
information refer to the Struts User Guide.

Data Sources
The <data-sources> tag allows you to configure connection pools to various data sources
for use by your application. You will normally want to use the connection pool features
of your Servlet container or application server instead, so we will not describe how to
configure and use Struts data sources.

Form Beans
The <form-beans> tag allows you to specify the form bean classes used to represent the
data received from your HTML forms. The <form-beans> tag contains one or more
<form-bean> tags. A <form-bean> tag simply associates a logical name with a fully
qualified package name of a form bean that provides the accessor and mutator methods

5 The ActionServlet class maintains state information that is specific for the web application it controls. If
the ActionServlet class is loaded from the Servlet container’s CLASSPATH, multiple Struts applications
deployed to the same Servlet container will use the same state information, resulting in unpredictable
behavior.

6 The ‘struts.jar’ file is also contained in the SWiFt distribution, which is available on the eDG website
(http://edg.utah.gov).

 10

http://jakarta.apache.org/site/binindex.html
http://edg.utah.gov/

for the parameters of an HTML form. The following is an example of a <form-beans>
tag containing one <form-bean> tag:

<form-beans>
 <form-bean name="enterAddressForm"
 type="gov.utah.swift.swiftexample1.bean.actionform.DisplayAddressForm"/>
</form-beans>

The <form-beans> tag contains one <form-bean> tag for each form used in the
application. A <form-bean> tag is required for every JSP that uses the Struts Form
custom tag. The logical names specified in the <form-bean> tags are used in the
<action> tags (described in the “Action Mappings” section of this document) to specify
the form bean classes used to receive parameters for specific requests.

Global Forwards
The <global-forwards> tag allows you to specify URLs to which requests can be
forwarded. The <global-forwards> tag contains one or more <forward> tags. A
<forward> tag associates a logical name with a complete or application relative URL.
This logical name can then be used from Action objects or from some of the Struts
custom tags to specify a URL to which a request is to be forwarded. The main benefit of
associating a logical name with these URLs is that it provides a convenient way to avoid
“hard-coding” URLs into your application. The following is an example of a <global-
forwards> tag containing one <forward> tag:

<global-forwards type="org.apache.struts.action.ActionForward">
 <forward name="defaultPage" path="/WEB-INF/jsp/EnterAddress.jsp"
 redirect="false"/>
</global-forwards>

The mapping can then be used from an Action object to specify the JSP to which a
request will be forwarded after the business logic is executed. The following example
shows how Action objects use global forwards (this code appears at the end of the
perform(…) method of an Action object):

return mapping.findForward("defaultPage");

Global forwards should be specified for pages that are accessed from more than one
location in an application (such as an error page). A way to specify forwards that are
only accessible from a single request is described in the “Action Mappings” section of
this document.

Action Mappings
The <action-mappings> tag and the <action> tag(s) it contains are the most important
tags used to configure a Struts application. The <action-mappings> tag may contain
multiple <action> tags. The <action> tags are represented in a running Struts application
by instances of the ActionMapping class described previously (in the “The
ActionMapping Class” section of this document). The main purpose of the <action> tag
is to specify the Action class used to process a request, the form bean (if any), and the

 11

URL(s) to which the request can be forwarded after processing. The <action> tag
contains several attributes, some of which are required while others are optional. The
following is an example of an <action-mappings> tag containing one <action> tag:

<action-mappings>
 <action
 path="/EnterAddress"
 type="gov.utah.swift.swiftexample1.action.EnterAddressAction"
 name="enterAddressForm"
 scope="request"
 validate="true"
 input="/WEB-INF/jsp/EnterAddress.jsp">
 <forward name="displayAddress" path="/WEB-INF/jsp/DisplayAddress.jsp"
 redirect="false"/>
 </action>

</action-mappings>

The Path Attribute
The ‘path’ attribute specifies the application context-relative path to the action to be
performed. The path is used by the ActionServlet to determine which action mapping
will be used for a request. In this example, specifying
http://your_application/EnterAddress.do will result in the information contained in the
<action> tag of this example being used to handle the request7.

The Type Attribute
The ‘type’ attribute specifies the fully qualified name of the Action subclass that will
handle the request.

The Name Attribute
The ‘name’ attribute specifies the logical name of the form bean (as specified in the
<form-beans> tag) used as a container for the parameters received with the request.

The Scope Attribute
The ‘scope’ attribute specifies whether the form bean is stored in the request or the user’s
session.

The Validate Attribute
The ‘validate’ attribute specifies whether the form bean will be validated. If set to ‘true’,
the ActionServlet calls the form bean’s validate() method before calling the perform(…)
method of the action.

The Input Attribute
The ‘input’ attribute specifies the application context-relative path to which the request
will be forwarded if a validation error occurs. This should normally be the path to the
JSP that will submit requests to this mapping.

7 Using the ‘.do’ extension is the default way to specify that the ActionServlet should handle a request. For
information on changing this default, refer to the “4.5.2 Configure the Action Servlet Mapping” section of
the Struts User Guide.

 12

http://your_application/EnterAddress.do

Other Attributes
The <action> tag may contain several other optional attributes. Refer to sections 4.3 and
4.4 of the Struts User Guide for more information. Complete information is available in
the description of the ‘action’ element in the DTD for the ‘struts-config.xml’ file8.

The Forward Tag
The <action> tag may contain one or more <forward> tags. These <forward> tags
function the same as the <forward> tags contained with the <global-forwards> tag
described above, except they are only accessible to the action specified by this mapping.

Validation and Error Handling

Validation of form beans has been described in previous sections and will not be repeated
here. In some cases, information required to validate form data will not be available until
the business logic is executed. In these cases, the validate() method of the form beans
may not serve a useful purpose. To turn form bean validation off, specify ‘false’ as the
value of the ‘validate’ attribute of the <action> tag for your action mapping.

To invoke the same validation behavior from an action as that provided by the form
beans, create an ActionErrors object, populate it with ActionError objects representing
the individual error messages, and place the ActionErrors object in the request. The key
value to be used when placing the ActionErrors object in the request is the value of the
‘ERROR_KEY’ field of the Action object. The following example illustrates how to
make the ActionErrors object available to the Struts Errors custom tag from an Action
object:

ActionErrors errors = new ActionErrors();
ActionError error = new ActionError(“error message key”);

errors.add(ActionErrors.GLOBAL_ERROR, error);
request.setAttribute(Action.ERROR_KEY, errors);

After placing the ActionErrors object in the request, the Action object should forward the
request back to the page that initiated the request by returning an ActionForward object
specifying the calling JSP. This technique can also be used for non-validation errors that
should be displayed on the page that submitted the request.

Some errors should not be displayed on the same page that initiated the request. These
errors are typically handled by forwarding to an error page. There are two main ways to
forward to an error page. One way is to specify a global forward for an error page and
then return an ActionForward object specifying the error page from the Action that
generates the error. This technique works for expected errors, but it does not handle
unexpected exceptions that may be thrown from the ActionServlet or any of the objects
whose methods may be called by ActionServlet.

8 The dtd is the ‘struts-config_1_0.dtd’ file contained in the ‘lib’ directory of the Struts binary distribution.

 13

The second way to handle these errors is to specify an error page (using the <error-page>
tag) in the ‘web.xml’ file of the application. This causes the Servlet container to
automatically forward unhanded exceptions to the specified page. You may want to use a
combination of these two techniques by specifying an error page in the ‘web.xml’ file
and specifying the same page as a global forward.

Struts Internationalization Features

Struts provides built-in support for building internationalized web applications. This
built-in support dramatically simplifies the creation of internationalized web applications.
Struts provides support for the following internationalization features:

• Resource Bundles
• Browser Specified Locales
• Internationalized Text
• Internationalized Error Messages

Each of these features are described in this section. The combination of these features
provides a reasonably complete internationalization framework. For information on
Struts internationalization features beyond what is covered in this document, refer to the
“3.2 Internationalization” section of the Struts User Guide. Additional information is
also available in the “Internationalization” document linked from the Index page of the
J2SE documentation.

Resource Bundles
Struts provides direct support for Java’s resource bundles to allow text (including error
messages) to be displayed in the user’s preferred language. For information on how to
create resource bundles, refer to the Java API documentation for the ResourceBundle
class. The default name for Struts resource bundles is ‘ApplicationResources.properties’.
Resources bundles should be placed in the ‘WEB-INF\classes’ directory of your project.

Browser Specified Locales
The Struts framework uses the preferred language specified in the settings of the user’s
browser to determine the resource bundle from which it should retrieve text. If a resource
bundle for the preferred locale does not exist, text is retrieved from the default resource
bundle9.

9 Although browsers allow users to specify multiple languages in order of preference, Struts ignores all but
the first specified language. If a resource bundle does not exist for the preferred language, the default
resource bundle is used.

 14

Internationalized Text
Internationalized text is retrieved from resource bundles by using the Struts Message
custom tag. For information on how to use this tag, refer to the “The Message Tag”
section of this document.

Internationalized Error Messages
ActionError objects represent error messages in Struts applications. ActionError objects
support internationalization by containing a key to an internationalized error message
instead of an actual message. The Struts Errors custom tag uses the error message key to
retrieve the appropriate error message from a resource bundle. This means that any
Struts application that makes use of the Errors tag must have it’s error messages specified
in a resource bundle even if the application only needs to support one language. At first
this sounds like a disadvantage of Struts. However, resource bundles are useful even for
single language applications because they provide a single point of maintenance for error
messages and other text displayed by the application.

Struts Summary

Struts is a powerful framework for building web applications. It is based on the Model-
View-Controller design pattern, and it supports the construction of internationalized web
applications. The binary distribution of Struts (available at
http://jakarta.apache.org/struts) comes with a blank project that contains the default setup
and configuration required to build a struts application. The steps required to build a
Struts application are listed below (not necessarily in order):

1. Download the Struts binary distribution and place the ‘struts.jar’ file on your
system classpath.

2. Unzip the ‘struts-blank.war’ file and use the resulting directory structure as the
directory structure of your application.

3. Create the JSPs required by your application.
4. Create form beans (ActionForm subclasses) for any HTML forms required by

your application.
5. Create Action classes (subclasses of the Action class) as required by your

application. As a general rule, you will need one Action class for each request.
6. Create classes to support the business logic accessed from your Action objects.
7. Connect the pieces together by editing the ‘struts-config.xml’ file from the

application’s ‘WEB-INF’ directory.
8. Deploy the application to a J2EE compliant Servlet container or application

server.

Software development is never as easy as following an eight-step process. However, the
Struts framework makes it much easier that it used to be. The remaining sections of this
document describe how Struts fits into the SWiFt framework, how to configure and
deploy applications that use the additional parts of the framework, and what
enhancements to the framework are planned for the future.

 15

http://jakarta.apache.org/struts

SWiFt Security Extension

SWiFt is being developed as a set of extensions to Struts. These extensions are packaged
with a specific version of Struts to provide a framework upon which to build web
applications. The main extension included with SWiFt 1.0 is an extensible API for
handling application security. This API provides a way to create classes that handle
application authorization against any security infrastructure (such as LDAP, NT security,
XML configuration files, etc.). The current version of SWiFt contains two
implementations of this security API. One of the implementations performs Novell
Directory Services (NDS) based security using the state’s new User Master Directory
(UMD) implementation of NDS. The other implementation of the security API handles
security based on the settings of an XML configuration file that specifies roles for
application users.

This section describes the SWiFt security extension. It starts with a description of the
general security API, and then describes the two security API implementations included
with this version of SWiFt. It also describes how additional implementations can be
created to allow SWiFt to support additional security models, and concludes with a
description of SWiFt custom tags that make security information available to JSPs that
are part of a SWiFt application. Except as noted here, configuration of SWiFt
applications is the same as Struts configuration.

Security Extension Overview

SWiFt obtains the ID of the current user by calling the getRemoteUser() method on the
request object for the requests made by the browser. The remote user can be set in the
request by any secure authentication mechanism that requires the user to log in before
accessing the application’s URL(s)10. This authentication occurs before the requests
reach the SWiFt framework.

After obtaining the user from the request, SWiFt uses an implementation of the extensible
security API to authorize or reject the user’s request. The implementation that will be
used to perform authorization is specified in the <security-config> tag of the
application’s ‘swift-config.xml’ file. The <security-config> tag is described in the “The
<security-config> Tag” section of this document.

The specified authorizer contains methods that indicate whether the user is authorized to
perform requested actions based on the roles assigned to the user in the underlying

10 ITS uses SiteMinder for authentication and URL protection. However, you can use SWiFt with any
authentication mechanism that sets the remote user in the incoming requests.

SiteMinder authentication can be added at deployment time by requesting SiteMinder protection when
requesting deployment by ITS. SiteMinder provides “Single Sign-On” support for the application and sets
the remote user in the request so the application can determine the user’s identify.

 16

security model. Unauthorized requests result in ServletSecurityExceptions being thrown
by SWiFt.

Security API Classes

SWiFt’s security API consists of the Authorizer interface and the following four classes:
AbstractAuthorizer , SwiftActionServlet, SwiftActionMapping, and
ServletSecurityException. The interface and each of these classes are described in this
section to provide a basis for understanding how to configure application security.
Information on how to handle security exceptions is also included.

The Authorizer Interface
The Authorizer interface provides the API used by SWiFt to authorize user requests.
Any class that implements this interface can be used by SWiFt to perform authorization.
As a result, SWiFt can easily be extended to support any security model.

The AbstractAuthorizer Class
The AbstractAuthorizer class provides a default implementation for most of the methods
that make up the Authorizer interface. This default implementation simplifies the
creation of classes to support additional security models. This implementation will be
sufficient for most if not all classes that implement the Authorizer interface. Subclasses
will still need to implement the getRoles() method, which returns the roles assigned to the
current user for the current application from the underlying security model.

The AbstractAuthorizer class compares the roles for the current user with the role(s)
required to perform the requested action. If a match is found, the user is authorized to
perform the requested action.

The SwiftActionServlet Class
The SwiftActionServlet class is a subclass of the Struts ActionServlet class. In a SWiFt
application, the SwiftActionServlet class takes the place of the ActionServlet class.
SwiftActionServlet serves as the Controller for SWiFt applications and is the single point
of access from the View(s). SwiftActionServlet functions the same as the ActionServlet
class with the addition of the functionality provided by the SWiFt extensions to Struts.

With each access of the Servlet, SwiftActionServlet obtains the remote user as described
in the “Security Extension Overview” section of this document11. It then uses the
appropriate implementer of the Authorizer interface to perform authorization—as
specified by the ‘authorizer’ attribute of the <security-config> tag from the ‘swift-

11 During application development, it is sometimes helpful to be able to test SWiFt applications without
having an authentication mechanism in place. The ‘user’ initialization parameter is provided for this
purpose. If the request object’s getRemoteUser() method returns null, the Servlet looks for the ‘user’
initialization parameter. If the parameter is found, its value is used in place of the value returned by
getRemoteUser(). This “back door” does not compromise production security because the parameter is
ignored when an authentication mechanism sets the remote user in the request.

 17

config.xml’ file. The <security-config> tag is described in the “The <security-config>
Tag” section of this document. If the authorizer class indicates that the user is
authorized, processing of the request continues. Otherwise, SwiftActionServlet throws a
ServletSecurityException.

The SwiftActionMapping Class
The SwiftActionMapping class is a subclass of the Struts ActionMapping class.
Instances of the SwiftActionMapping class represent the configuration information in a
SWiFt application that associates a URI with an action to be performed. This is the same
information represented by the ActionMapping class in a Struts application—with the
addition of the role(s) required to perform the action. The classes that implement the
Authorizer interface compare these roles to the roles assigned to the current user (from
the underlying security model) to determine if the user is authorized to perform the
requested action. Refer to the “Security Configuration” section of this document for
details about how to configure the security information.

The ServletSecurityException Class
The SwiftActionServlet throws ServletSecurityExceptions as a result of any unauthorized
attempt to invoke functionality on a SWiFt application. The recommended way to handle
these exceptions is to use the <error-page> tag in the application’s ‘web.xml’ file to
configure an error page to which exceptions are automatically forwarded by the Servlet.

Security Configuration

SWiFt configuration is the same as Struts configuration with the following four
exceptions:

1. The name of the configuration file is ‘swift-config.xml’ instead of ‘struts-
config.xml’

2. The doctype is different (it specifies a different DTD from that used by
‘struts-config.xml’)

3. A required <security-config> tag has been added
4. Optional <security-role> tags have been added

The ‘swift-config.xml’ file is still placed in the application’s ‘WEB-INF’ directory. The
changes to the doctype and the additional security tags are described below.

Doctype
The XML parser uses the ‘swift-config_1_0.dtd’ file to validate the ‘swift-config.xml’
file. To specify this DTD in your application’s XML configuration file, use the following
doctype tag:

 18

<!DOCTYPE struts-config PUBLIC
 "-//State of Utah//DTD Swift Configuration 1.0//EN"
 "http://webassets.utah.gov/dtd/swift-config_1_0.dtd">

The <security-config> Tag
The <security-config> tag specifies information required to perform application
authorization. It specifies the fully qualified name of the class used to perform
authorization, a URL that can be used by the authorizer to obtain information required to
perform authorization (such as the roles assigned to a user), and the identifier by which
the application is known to the underlying security model. The <security-config> tag is
required, and it must be the first tag defined inside the <struts-config> tag unless an
<error-handling> tag is also specified12. The following is an example of how to use the
<security-config> tag:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE struts-config PUBLIC
 "-//State of Utah//DTD Swift Configuration 1.0//EN"
 "http://webassets.utah.gov/dtd/swift-config_1_0.dtd">

<struts-config>
 <security-config
 authorizer="gov.utah.swift.security.LDAPAuthorizer"
 providerURL="http://authorizer.utah.gov/NASApp/LDAPAuthorizer"
 applicationID="SwiftExample1"/>

The ‘authorizer’ attribute of the <security-config> tag is required. It specifies the fully
qualified class name of the class that will be used to perform authorization. The
‘providerURL’ attribute specifies a URL that can be used by the Authorizer to obtain
information from the underlying security model that is required to perform authorization.
The ‘applicationID’ attribute specifies an identifier by which the application is known in
the underlying security model. Some authorizer implementations will require values for
all of these attributes, while others may not.

The <security-role> Tag
The <security-role> tag is specified inside an <action> tag in the ‘swift-config.xml’ file.
It is used to specify the role(s) that authorize users to perform the action specified by the
enclosing <action> tag. An <action> tag may contain any number of <security-role> tags
(including zero). Any user that is authenticated for access to the application may perform
actions that do not specify any <security-role> tags. For <action> tags that contain
multiple <security-role> tags, the action may be performed by authenticated users who
have any of the specified roles. The following is an example of how to use the <security-
role> tag:

12 The <error-handling> tag is described in the “Error Handling Override” section of this document.

 19

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE struts-config PUBLIC
 "-//State of Utah//DTD Swift Configuration 1.0//EN"
 "http://webassets.utah.gov/dtd/swift-config_1_0.dtd">

<struts-config>
 <security-config
 authorizer="gov.utah.swift.security.LDAPAuthorizer"
 providerURL="http://authorizer.utah.gov/NASApp/LDAPAuthorizer"
 applicationID="SwiftExample1"/>
 <action-mappings>
 <action
 path="/EnterAddress"
 type="gov.utah.swift.swiftexample1.action.EnterAddressAction"
 name="enterAddressForm"
 scope="request"
 validate="true"
 input="/WEB-INF/jsp/EnterAddress.jsp">
 <forward name="displayAddress"
 path="/WEB-INF/jsp/DisplayA
 <security-role name="RoleA"/>

ddress.jsp" redirect="false"/>

 <security-role name="RoleB"/>
 </action>
 </action-mappings>
</struts-config>

In this example, authenticated users with either the “RoleA” or “RoleB” role are
authorized to perform the “EnterAddress” action.

The NDS Security Implementation

SWiFt contains an implementation of the Authorizer interface that supports authorization
against the state of Utah’s NDS directory. The class that implements NDS authorization
is LDAPAuthorizer. The LDAPAuthorizer class obtains role information from the state’s
NDS directory to determine whether users are authorized to perform the requested
actions. The LDAPAuthorizer class is the Authorizer that should be used for most SWiFt
applications developed by agencies of the State of Utah.

The “The <security-config> Tag” section of this document describes how to specify the
Authorizer for SWiFt applications by using the <security-config> tag in the ‘swift-
config.xml’ configuration file. When using the LDAPAuthorizer, the ‘providerURL’
attribute of the <security-config> tag is required. It specifies the URL to a Servlet the
Authorizer uses to obtain role information for the current user and application from the
state’s NDS directory13. The ‘applicationID’ attribute of the <security-config> tag is also
required when using LDAPAuthorizer. It specifies the name by which the application is
known in the NDS directory. The following is a sample <security-config> tag for use
with LDAPAuthorizer:

13 The URL for the Servlet is http://authorizer.utah.gov/NASApp/LDAPAuthorizer.

 20

http://authorizer.utah.gov/NASApp/LDAPAuthorizer

<security-config
 authorizer="gov.utah.swift.security.LDAPAuthorizer"
 providerURL="http://authorizer.utah.gov/NASApp/LDAPAuthorizer"
 applicationID="SwiftExample1"/>

NDS Security Administration
The NDS security implementation depends on information in the state’s NDS directory.
The following steps are required to specify the necessary security information in the
directory:

• Application ID Creation
• Administrator Assignment
• User Account Creation
• User Profile Creation
• Role Creation
• Role Assignment

A security administrator for the application performs these steps. For detailed
information on application security administration when using LDAPAuthorizer, refer to
the “SWiFt NDS Administrator’s Guide”.

The XML Security Implementation

SWiFt contains an implementation of the Authorizer interface that supports authorization
against an XML configuration file. The class that implements XML based authorization
is XMLAuthorizer. The XMLAuthorizer class obtains role information from an XML
file for the current user to determine whether users are authorized to perform the
requested actions. The format for the XML configuration file used by XMLAuthorizer is
specified by the DTD at: http://webassets.utah.gov/dtd/xml-authorizer_1_0.dtd. The
following is an example XMLAuthorizer configuration file:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE struts-config PUBLIC
 "-//State of Utah//DTD XML Authorizer Configuration 1.0//EN"
 "http://webassets.utah.gov/dtd/xml-authorizer_1_0.dtd">

<authorizer-config>
 <user id="cn=juser,ou=PUBLIC,o=CZ">
 <role>EnterAddress</role>
 </user>
</authorizer-config>

The ‘id’ attribute of the <user> tag must be the value that will be returned by the
getRemoteUser() method of the request object for users that will use the application. The
value that is returned by the getRemoteUser() method is determined by the authentication

 21

http://webassets.utah.gov/dtd/xml-authorizer_1_0.dtd

mechanism that authenticates users who access the application14. Each <user> tag can
contain multiple <role> tags. The <role> tags specify all of the roles assigned to the user
for the current application15.

When using XMLAuthorizer, the ‘providerURL’ attribute of the <security-config> tag is
required. It specifies the location and file name of the XML configuration file used by
XMLAuthorizer. For use with XMLAuthorizer, the value for ‘providerURL’ must be a
relative URL referring to a document in the application’s ‘WEB-INF’ directory. The
‘applicationID’ attribute of the <security-config> tag is not required when using
XMLAuthorizer. The following is a sample <security-config> tag for use with
XMLAuthorizer:

<security-config
 authorizer="gov.utah.swift.security.XMLAuthorizer"
 providerURL="/WEB-INF/xml-authorizer.xml"/>

Accessing the Security API

SwiftActionServlet places the Authorizer object in the user’s session during the first
access of SwiftActionServlet. This object serves as an API to SWiFt’s security model
that can be accessed from Java classes and JSPs. This provides programmatic access to
the same information used by SWiFt to handle authorization. The Authorizer object
provides access to the list of roles of the current user for the current application, and
provides a method to determine whether the user is authorized to perform specified
actions. Although this direct access will rarely be needed, it is a powerful feature of
SWiFt

The key under which the Authorizer object is stored in the user’s session is the
application ID with the value returned by SwiftActionServlet’s AUTHORIZER_SUFFIX
static variable appended to the end. The following is an example of how to get the
Authorizer object for the “swift-example1” application (assume that the application ID is
“SwiftExample1”):

Authorizer authorizer = (Authorizer) session.getAttribute("SwiftExample1" +
 SwiftActionServlet.AUTHORIZER_SUFFIX);

The application ID is returned in each request that accesses SwiftActionServlet, so you
can obtain the Authorizer object without knowing the application ID as long as you have
access to a request that was handled by SWiFt. This is useful for accessing the
Authorizer from JSPs returned by SwiftActionServlet as shown in the following example:

14 For applications using SiteMinder to authenticate against the state’s NDS directory, the value returned by
the getRemoteUser() method will be the current user’s NDS common name.

15 The XMLAuthorizer’s configuration file applies to only one application, so the “current application” is
the application containing the configuration file.

 22

HttpSession session = pageContext.getSession();
String applicationID = (String) pageContext.getRequest().getAttribute(
 Authorizer.APPLICATION_ID_KEY);
Authorizer authorizer = (Authorizer) session.getAttribute(applicationID +
 SwiftActionServlet.AUTHORIZER_SUFFIX);

Security Custom Tags

Four custom tags (UserHasRole, UserNotHasRole, UserAuthorized, and
UserNotAuthorized) are included with SWiFt to provide access to security and role
information to the View layer of a SWiFt application without requiring developers to
write scriptlets that access the Authorizer directly. These tags provide a convenient way
to create dynamic JSPs that vary their content depending on whether the user has
specified roles or has security access to specified actions.

The security custom tags depend on the Authorizer object that is stored in the user’s
session the first time the ‘SwiftActionServlet’ class is accessed. As a result, they do not
have the information necessary to determine if a user has a specified role or is authorized
to perform an action until at least one action has been invoked. The tags behave in a
pessimistic way when the required information is not available by assuming that the user
does not have the specified role or is not authorized to perform the specified task16.

The UserHasRole Tag
The UserHasRole tag causes the JSP to render any HTML between it’s opening and
closing tag if the user has the role specified by the required ‘role’ attribute. If the user
does not have the specified role, any HTML between the opening and closing
UserHasRole tag is ignored. The following example illustrates how the UserHasRole tag
is used:

<%@ page language="java"%>
<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html"%>
<%@ taglib uri="/WEB-INF/swift-security.tld" prefix="security"%>

<html:html>
<head>
</head>
<body>
 <security:userHasRole role="EnterAddress">
 This text is only rendered if the user has RoleA.
 </security:userHasRole>
</body>
</html:html>

The UserNotHasRole Tag
The UserNotHasRole tag works like the UserHasRole tag, except it only renders enclosed
HTML if the user does not have the specified role.

16 This is normally only an issue from a default page that is displayed when a user first accesses a SWiFt
application without specifying a URL for a SWiFt action. The security custom tags are not useful on these
pages because the required security information is not yet available.

 23

The UserAuthorized Tag
The UserAuthorized tag causes the JSP to render any HTML between it’s opening and
closing tag if the user is authorized to perform the action specified by the required ‘path’
attribute. If the user is not authorized to perform the specified action, any HTML
between the opening and closing UserAuthorized tag is ignored. The following example
illustrates how the UserAuthorized tag is used:

<%@ page language="java"%>
<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html"%>
<%@ taglib uri="/WEB-INF/swift-security.tld" prefix="security"%>

<html:html>
<head>
</head>
<body>
 <security:userAuthorized path="/EnterAddress">
 This text is only rendered if the user has security rights
 to access the ‘EnterAddress’ action.
 </security:userAuthorized>
</body>
</html:html>

The UserNotAuthorized Tag
The UserNotAuthorized tag works like the UserAuthorized tag, except it only renders
enclosed HTML if the user does not have access to the specified action.

 24

Logging

SWiFt uses Log4J for application logging17. Like Struts, Log4J is open-source software
that is part of the Jakarta project of the Apache Software Foundation. Log4J is a robust,
highly flexible, configurable logging API. This section provides a very brief overview of
Log4J and gives information on how to configure it for your SWiFt applications. For
detailed information, refer to the Log4J web site
(http://jakarta.apache.org/log4j/docs/index.html)18.

Log4J Overview

Log4J provides a convenient, easy to use, API for logging messages from any
application. It uses a configurable logging level to determine which messages will be
logged and which will be ignored. One of the best features of Log4J is its ability to log to
multiple locations. For example, you can specify that your application should log to a
file and to the console at the same time.

Log4J has been integrated with SWiFt (including the Struts component of SWiFt), in a
way that allows you to configure Log4J for your application, and have it function the
same way from the SWiFt and Struts classes included with your application.

Log4J Setup and Configuration

The ‘log4j.jar’ file must be included with each SWiFt application, and must not be
available from the CLASSPATH of your Servlet container or application server19. We
recommend that you use the ‘log4j.jar’ file from the lib directory of the SWiFt
distribution (this file is included in the blank project described in the “Using the Blank
Project” section of this document).

Log4J can be configured within SWiFt by using either a Java properties file or an XML
file. The Java properties file is called ‘log4j.properties’. The XML file is called
‘log4j.xml’. One of the files must exist in the application’s ‘WEB-INF’ directory for
logging to occur. If both files exist in the directory, the XML file is used. For
information on how to specify the configuration information in the file, refer to the
“Short Introduction to Log4J” document on the Log4J web site. The document provides

17 We considered using the new J2SE 1.4 logging API instead. However, the J2SE logging API is only
available with J2SE 1.4. The current version of most Servlet containers and application servers is J2SE 1.3,
so a solution that requires J2SE 1.4 is not reasonable.

18 The “Short Introduction to Log4J” (http://jakarta.apache.org/log4j/docs/manual.html) is particularly
useful.

19 Making the ‘log4j.jar’ file available from the Servlet container’s CLASSPATH causes all applications to
use the same logging configuration.

 25

http://jakarta.apache.org/log4j/docs/index.html
http://jakarta.apache.org/log4j/docs/manual.html

examples of how to configure Log4J using a properties file, but it does not contain any
information on XML configuration20.

20 XML configuration is not documented anywhere on the Log4J web site. The best source of information
is currently the “InitUsingXMLPropertiesFile” example included with the Log4J distribution or the “swift-
example1” example included with SWiFt.

 26

Error Handling Override

Some Servlet containers do not properly forward Errors and Exceptions to error pages as
specified in the <error-page> tag(s) of the ‘web.xml’ file. These containers only partially
support the <error-page> tag by restricting the exception types that can be specified to
those that are declared to be thrown by the ‘service’ method of the ‘javax.servlet.Servlet’
interface. This restriction is not acceptable in cases where all Errors and Exceptions
(including unchecked exceptions) should go to the same error page.

SWiFt addresses this issue by providing its own error handling mechanism that overrides
the Servlet container’s default error handling mechanism and forwards Errors and
Exceptions to the appropriate error page as specified in the <error-page> tag(s) of the
‘web.xml’ file. By default, SWiFt’s error handling mechanism is turned off and any
unhandled Errors or Exceptions are passed to the Servlet container. To turn SWiFt’s
error handling mechanism on, specify the <error-handling> tag with an ‘override’
attribute value of ‘true’ immediately after the <struts-config> tag in the ‘swift-
config.xml’ file as illustrated in the following example:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE struts-config PUBLIC
 "-//State of Utah//DTD Swift Configuration 1.0//EN"
 "http://webassets.utah.gov/dtd/swift-config_1_0.dtd">

<struts-config>

 <error-handling override="true"/>

 <security-config
 authorizer="gov.utah.swift.security.LDAPAuthorizer"
 providerURL="http://authorizer.utah.gov/NASApp/LDAPAuthorizer"
 applicationID="SwiftExample1"/>
 .
 .
 .
</struts-config>

With the error handling override feature turned on, SWiFt ensures that Errors and
Exceptions thrown from within ‘SwiftActionServlet’ are forwarded to the appropriate
error page regardless of whether the Servlet container properly handles the <error-page>
tag21. Exceptions or Errors that do not have a corresponding <error-page> tag in the
‘web.xml’ file are passed to the Servlet container’s default error handling mechanism.

21 This feature only affects Errors and Exceptions thrown from ‘SwiftActionServlet’. Any other Servlets
will continue to use the Servlet container’s default error handling mechanism. However, most applications
should not have any other Servlets.

 27

Application Configuration and Deployment

This section describes how to configure and deploy SWiFt applications, including Servlet
container setup. It does not describe how to specify security information for your
application in the state’s NDS directory. For information on specifying application
security information in the NDS directory, refer to the “SWiFt NDS Administrator’s
Guide”. Some of the information contained in this section is also specified in other
sections of this document. This section brings all of the configuration information
together in one section for convenience in showing how it all fits together. The ‘swift-
example1’ sample application shows a completed configuration of a simple SWiFt
application. You should also read Appendix I (“Using Struts on iPlanet Application
Server”) if you plan to deploy SWiFt or Struts applications to iPlanet.

Servlet Container Setup

To run SWiFt, you must have J2SE version 1.3 or later and a Servlet container (or
application server) that supports the Servlet API specification version 2.2 or later and the
Java Server Pages specification version 1.1 or later. Additional prerequisites are required
for building the Struts part of SWiFt from source22.

Using the Blank Project

The easiest way to configure a SWiFt application is to start with the blank project from
the SWiFt distribution and use it as a basis for your application. This section describes
how to build an application from the blank project and specifies the changes that need to
be made to the various configuration files included in the blank project.

To build an application from the blank project, copy the ‘blank’ directory from your
SWiFt distribution to the desired location of your project and rename the ‘blank’
directory to the name of your application. The blank project contains the following file
and directory structure:

22 For additional information, refer to the “Prerequisite Software” section of the Struts Installation
document on the Struts website (http://jakarta.apache.org/struts/userGuide/installation.html).

 28

http://jakarta.apache.org/struts/userGuide/installation.html

swift-blank
 |
 +--WEB-INF
 | |
 | +--classes
 | | |
 | | +--ApplicationResources.properties
 | |
 | +--lib
 | | |
 | | +--log4j.jar
 | | |
 | | +--struts-patched.jar
 | | |
 | | +--swift.jar
 | | |
 | | +--UserInfo.jar
 | |
 | +--log4j.properties
 | |
 | +--log4j.xml
 | |
 | +--struts-bean.tld
 | |
 | +--struts-form.tld
 | |
 | +--struts-html.tld
 | |
 | +--struts-logic.tld
 | |
 | +--struts-template.tld
 | |
 | +--swift-config.xml
 | |
 | +--swift-security.tld
 | |
 | +--web.xml
 | |
 | +--xml-authorizer.xml
 |
 +--index.jsp

The ‘classes’ directory is where the compiled class files for your application are placed.
It also contains the ‘ApplicationResources.properties’ file. The
‘ApplicationResources.properties’ file contains the localized text messages for the
application. This is the default resource bundle that will be used if a resource bundle for
the locale specified in the user’s browser does not exist. The messages in the resource
bundle will need to be replaced with the text to be displayed in your application. You can
add additional resource bundles with translated text to make your application support
additional languages and geographic regions. For example, a resource bundle named

 29

‘ApplicationResources_es.properties’ will be used for applications displayed in a browser
where the user has specified ‘Spanish’ as the preferred language23.

The ‘lib’ directory contains the four ‘jar’ files required by SWiFt applications (log4j.jar,
struts-patched.jar, swift.jar, and UserInfo.jar). The ‘struts-patched.jar’ file contains a
patch required to compensate for a bug in iPlanet 6.5 that prevents it from being able to
run Struts based applications24.

The ‘WEB-INF’ directory contains six tag library descriptors (‘tld’ files) and the
configuration files required by SWiFt applications. Five of the ‘tld’ files are the tag
library descriptors for the Struts custom tags. The other ‘tld’ file (swift-security.tld) is
the tag library descriptor for the SWiFt custom tags. The configuration files are
described in separate sections below.

The ‘index.jsp’ file is a simple Java Server Page that displays text from the resource
bundle. This JSP should be replaced with the default page for your application. The
‘index.jsp’ page is the default page for the application, and because of its location, it is
displayed without accessing the SWiFt framework. As a result SWiFt does not secure
access to this page25. To ensure that all application functionality is secure, we
recommend that the ‘index.jsp’ page be used simply to forward the request to a SWiFt
action that is secured by SWiFt. The following example (from the ‘swift-example1’
sample application) illustrates how the ‘index.jsp’ page can be used to forward requests
to SWiFt actions that are secured by SWiFt:

<%@ page import="javax.servlet.jsp.PageContext" %>
<%@ page language="java" %>

<html>
<head>
</head>
<body>
 <% pageContext.forward("/DisplayEnterAddress.do"); %>
</body>
</html>

This page provides a window into the application without exposing any unsecured
functionality.

23 If the user has specified a specific dialect of the preferred language or a geographic region for the
preferred language, the SWiFt framework will search for a resource bundle for that dialect or region. For
example, if the user specifies ‘es_MX’ as the preferred language, SWiFt will search for a resource bundle
named ‘ApplicationResources_es_MX.properties’. If not found, it will search for a resource bundle named
‘ApplicationResources_es.properties’. If it doesn’t find either resource bundle it will use the default
‘ApplictionResources.properties’ bundle.

24 For details, refer to Appendix I.

25 If an authentication mechanism (such as SiteMinder) is in place, it will still protect the page by requiring
the user to log in.

 30

The ‘web.xml’ File
The ‘web.xml’ file is the standard J2EE application descriptor required for all J2EE
applications. It specifies the name of the application, the controller Servlet
(SwiftActionServlet) with initialization parameters, the mapping that determines which
URLs invoke the controller Servlet, the name of the default page, and the tag library
descriptors for the SWiFt and Struts tag libraries used by the application. Most entries in
the ‘web.xml’ file will not need to be changed for your application. This section
describes the changes that will need to be made. For additional information not described
here, refer to the Struts User Guide.

Application deployment tools use the <display-name> tag to display the name of the
application. The text inside this tag should be changed to the name of your application.

The value of the ‘user’ initialization parameter is used to identify the user when an
authentication mechanism is not available. This is sometimes useful in development
environments. If your development environment has access to an authentication
mechanism that sets the remote user in incoming requests, you can remove the parameter.
Otherwise, change it to the identifier of the person who should be considered the user in
your development environment.

The <servlet-mapping> specifies which URLs will invoke the controller Servlet. The
default setting invokes the controller Servlet for any URL to the application that ends in
‘.do’. This can easily be changed by changing the <url-pattern> tag inside the <servlet-
mapping> tag.

The tag library descriptors included in the ‘web.xml’ file are a subset of the available tag
libraries. Change the set of tag library descriptors to include only those used by your
application.

The ‘swift-config.xml’ File
The ‘swift-config.xml’ file contains the configuration information for the Struts
functionality and the SWiFt extensions. Details of the ‘swift-config.xml’ file are
specified in the “Security Configuration”, “Struts Setup and Configuration”, and “Error
Handling Override” sections of this document. Follow the instructions in these sections
to configure your application. Depending on the Authorizer you plan to use for your
application, you will need to change the attributes of the <security-config> tag26. The
‘swift-config.xml’ file from the blank project contains commented-out examples of how
to configure a SWiFt application.

The ‘xml-authorizer.xml’ File
The ‘xml-authorizer.xml’ file specifies the application’s users and their corresponding
roles when the XMLAuthorizer is being used. The file can be deleted if another
authorizer is being used for your application. The ‘xml-authorizer.xml’ file can be

26 At a minimum, you will need to either change the ‘application ID’ attribute to the ID of your application
or remove it if the Authorizer to be used doe not require and application ID.

 31

renamed as long as the value for the ‘providerURL’ attribute of the <security-config> tag
in the ‘swift-config.xml’ file is updated to match the new name.

The ‘log4j.xml’ and ‘log4j.properties’ Files
The ‘log4j.xml’ and ‘log4j.properties’ files are used to configure application logging.
One of the files should be deleted (depending on whether you want to configure logging
from an XML or a properties file). If both files exist, the XML file is used. By default,
the log messages will be logged to a file named ‘swift-blank.log’ in the Servlet
container’s ‘logs’ subdirectory and only messages with a log level of ‘warn’ or higher
will be logged. You will need to verify that the specified file name and path are valid on
your server. For information on changing the logging configuration, refer to the “Short
Introduction to Log4J” document on the Log4J web site
(http://jakarta.apache.org/log4j/docs/manual.html).

Adding Java Server Pages
Java Server Pages can be placed almost anywhere in your application’s directory
structure. However, any Java Server Pages that are not specified under the ‘WEB-INF’
directory can be accessed directly from a web browser (without accessing the SWiFt
framework). As a result, we recommend that all Java Server Pages (except the default
‘index.jsp’ page) be placed in a ‘jsp’ subdirectory of the ‘WEB-INF’ directory. These
JSPs can then be accessed from ‘forwards’ specified in the ‘swift-config.xml’ file that use
relative paths from the application base directory as follows:

<forward name="defaultPage" path="/WEB-INF/jsp/MyJSP.jsp" redirect="false"/>

Adding Classes
The “Action”, “ActionForm”, and other Java classes required by your application are
placed in the application’s ‘WEB-INF/classes’ directory in a directory structure matching
the package names of the classes.

Application Deployment

To deploy your application, use the ‘jar’ tool to create a ‘war’ file for your application.
You can then use the deployment tool for your Servlet container or application server to
deploy the application. Deployment tools package the ‘war’ file in an ‘ear’ file. You can
also use the ‘jar’ tool to create the ‘ear’ file manually.

 32

http://jakarta.apache.org/log4j/docs/manual.html

Future Enhancements

SWiFt is being developed and maintained by ITS. However, ITS is considering
maintaining the project in an “open-source” fashion in the near future. This would
provide a way for any developer within state government to participate in the project.

Plans are being made now for enhancements to SWiFt. We anticipate that in the future,
direct support will be added for Web Services, EJB development, access to State of Utah
employee data through EJBs, and support for the “Data Access Object” design pattern27.
Enhancements will also be made to the SWiFt security API. We are also in the process
of developing a library of utility classes that will be included as a standard part of SWiFt.
These utility classes will also be made available for non-SWiFt applications.

27 Although SWiFt does not provide direct support for these technologies, they can still be used to build
SWiFt applications by accessing them from ‘Action’ objects.

 33

Appendix I – Using Struts on iPlanet Application Server

This appendix describes problems we have encountered with iPlanet application server,
and specifies changes required to make Struts and/or SWiFt applications function
properly on iPlanet. Although the changes described here are for iPlanet 6.5, they are
backward compatible with previous versions of iPlanet and should also be compatible
with any other application server. The ‘swift-example1’ sample application incorporates
all of the changes described here. In addition to these changes, we recommend that you
only deploy ‘ear’ files to iPlanet. We have had sporadic problems with applications that
are deployed directly from ‘war’ files.

The iPlanet 6.5 Struts Patch

A patch must be made to Struts to make it function on iPlanet 6.5. This patch is actually
a work-around for an iPlanet 6.5 bug. iPlanet 6.5 does not locate top-level, non-public
classes that share a source file with a top-level, public Servlet. Supporting these classes
is part of the Java language specification, so this is an iPlanet bug. However, it is easily
resolved by making a change to Struts.

Struts has an ‘AddDataSourceRule’ class that shares a source file with the
‘ActionServlet’ class. The ‘AddDataSourceRule’ class can be converted into a class that
iPlanet 6.5 can locate by making it an inner class of the ‘ActionServlet’ class. This
change has already been made in the ‘struts-patched.jar’ file included with SWiFt. The
‘struts-patched.jar’ file should be used in place of ‘struts.jar’ for any Struts or SWiFt
applications deployed to iPlanet. The ‘struts-patched.jar’ file should also work with any
other Servlet container or application server.

The ‘ias-web.xml’ File

The ‘ias-web.xml’ file is required by iPlanet Application Server to specify a globally
unique identifier (GUID) for all Servlets in a web application. GUIDs may also be
specified for JSPs. The iPlanet deployment tool is supposed to generate the required file
if it does not already exist in the application’s ‘war’ file. However, some versions of
iPlanet (including iPlanet 6.5) do not generate the file correctly in some circumstances.
As a result, we recommend creating the file manually and placing it in the ‘war’ file’s
‘WEB-INF’ directory for any web application that is to be deployed to iPlanet. The
following is the ‘ias-web.xml’ file of the ‘swift-examle1’ sample application:

 34

 35

<!DOCTYPE ias-web-app PUBLIC '-//Sun Microsystems, Inc.//DTD iAS Web
Application 1.0//EN'
'http://developer.iplanet.com/appserver/dtds/IASWebApp_1_0.dtd'>

<ias-web-app>

 <servlet>
 <servlet-name>action</servlet-name>
 <guid>{57AE2EB9-7179-1D45-B61F-080020B97711}</guid>
 <validation-required>false</validation-required>
 <servlet-info>
 <sticky>false</sticky>
 <encrypt>false</encrypt>
 <number-of-singles>10</number-of-singles>
 <disable-reload>false</disable-reload>
 </servlet-info>
 </servlet>

 <session-info>
 <impl>distributed</impl>
 <dsync-type>dsync-distributed</dsync-type>
 <timeout-type>last-access</timeout-type>
 <secure>false</secure>
 <domain></domain>
 <path></path>
 <scope></scope>
 </session-info>

</ias-web-app>

The name specified in the <servlet-name> tag must match the name specified in the
<servlet-name> tag of the corresponding ‘web.xml’ file entry. The value specified for
the <guid> tag should be generated by invoking the ‘kguidgen’ tool from the ‘bin’
directory of your iPlanet installation. For details on the other tags of the ‘ias-web.xml’
file, refer to the iPlanet documentation.

A <servlet> tag must exist in the ‘ias-web.xml’ file for each Servlet in your application.
JSPs only require <servlet> tags if they have <servlet> tags in the ‘web.xml’ file.

Error Handling

IPlanet 6.5 (and probably previous versions) has the error-handling problem described in
the ‘Error Handling Override’ section of this document. This problem is easily resolved
for SWiFt applications by turning on SWiFt’s error handling mechanism as described in
the “Error Handling Override” section of this document.

	Table of Contents
	SWiFt Overview
	Design Patterns
	The Model-View-Controller Pattern
	The Single-Servlet Pattern
	The Command Pattern

	Struts
	The Controller Layer
	The ActionServlet Class
	The ActionMapping Class
	ActionForm Classes
	Action Classes
	The ActionForward Class

	The View Layer
	Java Server Pages
	Struts Custom Tags
	The HTML Tag
	The Errors Tag
	The Form Tag
	The Input Tags
	The Message Tag

	Custom Tag Summary

	The Model Layer
	Struts Setup and Configuration
	Data Sources
	Form Beans
	Global Forwards
	Action Mappings
	The Path Attribute
	The Type Attribute
	The Name Attribute
	The Scope Attribute
	The Validate Attribute
	The Input Attribute
	Other Attributes
	The Forward Tag

	Validation and Error Handling
	Struts Internationalization Features
	Resource Bundles
	Browser Specified Locales
	Internationalized Text
	Internationalized Error Messages

	Struts Summary

	SWiFt Security Extension
	Security Extension Overview
	Security API Classes
	The Authorizer Interface
	The AbstractAuthorizer Class
	The SwiftActionServlet Class
	The SwiftActionMapping Class
	The ServletSecurityException Class

	Security Configuration
	Doctype
	The <security-config> Tag
	The <security-role> Tag

	The NDS Security Implementation
	NDS Security Administration

	The XML Security Implementation
	Accessing the Security API
	Security Custom Tags
	The UserHasRole Tag
	The UserNotHasRole Tag
	The UserAuthorized Tag
	The UserNotAuthorized Tag

	Logging
	Log4J Overview
	Log4J Setup and Configuration

	Error Handling Override
	Application Configuration and Deployment
	Servlet Container Setup
	Using the Blank Project
	The ‘web.xml’ File
	The ‘swift-config.xml’ File
	The ‘xml-authorizer.xml’ File
	The ‘log4j.xml’ and ‘log4j.properties’ Files
	Adding Java Server Pages
	Adding Classes

	Application Deployment

	Future Enhancements
	Appendix I – Using Struts on iPlanet Application
	The iPlanet 6.5 Struts Patch
	The ‘ias-web.xml’ File
	Error Handling

